WYTYCZNE W ZAKRESIE OKREŚLANIA PRZYROSTU CIŚNIENIA W POMIESZCZENIU, JAKI MÓGŁBY ZOSTAĆ SPOWODOWANY PRZEZ WYBUCH

- 1. Przy dokonywaniu oceny zagrożenia wybuchem pomieszczeń należy brać pod uwagę najbardziej niekorzystną z punktu widzenia ewentualnych skutków wybuchu sytuację mogącą wytworzyć się w procesie ich eksploatacji, uwzględniając najbardziej niebezpieczny, występujący tam rodzaj substancji oraz największą jej ilość, jaka mogłaby brać udział w reakcji wybuchu.
- 2. Przyrost ciśnienia w pomieszczeniu ΔP (w Pa), spowodowany przez wybuch z udziałem jednorodnych palnych gazów lub par o cząsteczkach zbudowanych z atomów węgla, wodoru, tlenu, azotu i chlorowców jest określany za pomocą równania:

$$\Delta P = \frac{m_{\text{max}} \cdot \Delta P_{\text{max}} \cdot W}{V \cdot C_{\text{ef}} \cdot \rho}$$
[1]

gdzie:

m_{max} – maksymalna masa substancji palnych, tworzących mieszaninę wybuchową, jaka może wydzielić się w rozpatrywanym pomieszczeniu (kg);

ΔP_{max} – maksymalny przyrost ciśnienia przy wybuchu stechiometrycznej mieszaniny gazowo- lub parowo-powietrznej w zamkniętej komorze (Pa);

 W – współczynnik przebiegu reakcji wybuchu, uwzględniający niehermetyczność pomieszczenia, nieadiabatyczność reakcji wybuchu, a także fakt udziału w reakcji niecałej ilości palnych gazów i par, jaka wydzieliłaby się w pomieszczeniu – równy 0,17 dla palnych gazów i 0,1 dla palnych par;

V – objętość przestrzeni powietrznej pomieszczenia, stanowiąca różnicę między objętością pomieszczenia i objętością znajdujących się w nim instalacji, sprzętu, zamkniętych opakowań itp. (m³);

C_{st} – objętościowe stężenie stechiometryczne palnych gazów lub par:

$$C_{st} = \frac{1}{1 + 4.84 \cdot \beta}$$
 [2]

β – stechiometryczny współczynnik tlenu w reakcji wybuchu:

$$\beta = n_{C} + \frac{n_{H} - n_{CI}}{4} - \frac{n_{O}}{2}$$
 [3]

 $\rm n_{C'}\,n_{H'}\,n_{Cl'}\,n_0$ – odpowiednio ilości atomów węgla, wodoru, chlorowców i tlenu w cząsteczce gazu lub pary;

- gęstość palnych gazów lub par w temperaturze pomieszczenia w normalnych warunkach pracy (kg · m⁻³).

3. Przyrost ciśnienia w pomieszczeniu ΔP (w Pa), spowodowany przez wybuch z udziałem substancji palnych niewymienionych w pkt 2, jest określany za pomocą równania:

$$\Delta P = \frac{m_{\text{max}} \cdot q_{\text{sp}} \cdot P_{\text{o}} \cdot W}{V \cdot \rho_{\text{p}} \cdot c_{\text{p}} \cdot T}$$
 [4]

gdzie:

q_{sp} - ciepło spalania (J · kg⁻¹);

P_o – ciśnienie atmosferyczne normalne, równe 101 325 Pa;

 $\rho_{\rm p}$ – gęstość powietrza w temperaturze T (kg · m⁻³);

c_p − ciepło właściwe powietrza, równe 1,01 · 10³ J · kg⁻¹ · K⁻¹;

T - temperatura pomieszczenia w normalnych warunkach pracy (K);

W = 0,17 dla palnych gazów i uniesionego palnego pyłu;

W = 0,1 dla palnych par i mgieł;

pozostałe - jak we wzorze [1].

 Masa palnych par m (w kg), wydzielających się w pomieszczeniu wskutek parowania cieczy z otwartej powierzchni, jest określana za pomocą równania:

$$m = 10^{-9} \cdot F \cdot \tau \cdot K \cdot P_s \cdot \sqrt{MT}$$
 [5]

gdzie:

 F – powierzchnia parowania cieczy (w m²) – dla każdego dm³ cieczy rozlanej na posadzce betonowej przyjmuje się F = 0,5 m² dla roztworów zawierających nie więcej niż 70 % masowego udziału rozpuszczalnika i F = 1 m² dla pozostałych cieczy;

τ – przewidywany maksymalny czas wydzielania się par (s);

K – współczynnik parowania określony w tabeli;

P_s – prężność pary nasyconej w temperaturze pomieszczenia t w °C (Pa):

$$P_s = 133 \cdot 10^{\left[A - \frac{B}{t + C_A}\right]}$$
 [6]

A, B, C_A – współczynniki równania Antoine'a dla danej cieczy;

M — masa cząsteczkowa cieczy (kg · kmol⁻¹).

Wartości współczynnika parowania K

Prędkość przepływu powietrza nad powierzchnią parowania (m·s ⁻¹)	Temperatura pomieszczenia w °C				
	10	15	20	30	35
0	1,0	1,0	1,0	1,0	1,0
0,1	3,0	2,6	2,4	1,8	1,6
0,2	4,6	3,8	3,5	2,4	2,3
0,5	6,6	5,7	5,4	3,6	3,2
1,0	10,0	8,7	7,7	5,6	4,6

5. W przypadku występowania w pomieszczeniu uruchamianej samoczynnie wentylacji awaryjnej, przy określaniu m_{max} dla palnych gazów lub par dopuszcza się uwzględnianie jej działania, jeżeli odciągi powietrza znajdują się w pobliżu miejsca przewidywanego wydzielania się gazów lub par. Przyjmowaną do obliczenia ΔP maksymalną masę substancji palnych można wtedy zmniejszyć "k" razy, przy czym:

$$k = 1 + n \cdot \tau \tag{7}$$

gdzie:

- n ilość wymian powietrza w pomieszczeniu przy działaniu wentylacji awaryjnej (s⁻¹);
- τ przewidywany czas wydzielania gazów lub par (s).
- 6. Obliczenie przewidywanego przyrostu ciśnienia w pomieszczeniu nie jest wymagane w przypadku, gdy bez jego dokonania inwestor, jednostka projektowania lub użytkownik decydujący o procesie technologicznym uznaje pomieszczenie za zagrożone wybuchem.